Theranostic TEMPO-functionalized Ru(ii) complexes as photosensitizers and oxidative stress indicators.

نویسندگان

  • Jing Yang
  • Qian Cao
  • Wei-Liang Hu
  • Rui-Rong Ye
  • Liang He
  • Liang-Nian Ji
  • Peter Z Qin
  • Zong-Wan Mao
چکیده

New TEMPO-functionalized Ru(ii) polypyridyl complexes were synthesized as efficient theranostic photosensitizers for cancer treatment. Interestingly, due to the presence of a redox sensitive TEMPO moiety, an enhancement in the intracellular fluorescence of TEMPO-functionalized Ru(ii) complexes was observed during photodynamic treatment in both confocal microscopy and flow cytometry. This can be explained by the conversion of the TEMPO radical moiety to diamagnetic non-radical species in cells upon PDT-induced oxidative stress. To the best of our knowledge this is the first ruthenium complex capable of simultaneously inducing and monitoring the oxidative stress. The tethered TEMPO moiety decreased the inherent dark-cytotoxicity and increased the photo-toxicity simultaneously, both of which contributed to the greatly improved photodynamic therapy (PDT) efficacy, ultimately resulting in cancer cell apoptosis. The phototoxicity index value for TEMPO-functionalized Ru(ii) complexes was selective towards cancer cell lines (280.5 for HeLa cells vs. 30.2 for LO2 cells) and ca. 40-fold higher than that for TEMPO-free Ru(ii) analogues (6.7 for HeLa cells). The main contributor for such a greatly enhanced PDT efficacy was the effect of the TEMPO moiety on the cellular uptake and intracellular ROS levels. We therefore demonstrate that the combination of TEMPO with the photosensitizers may be an emerging strategy to develop novel photosensitizer-based theranostic platforms, which can induce and monitor the PDT response simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards the development of functionalized polypyridine ligands for Ru(II) complexes as photosensitizers in dye-sensitized solar cells (DSSCs).

A number of novel ruthenium(II) polypyridine complexes have been designed and synthesized for use as photosensitizers in dye-sensitized solar cells (DSSCs) due to their rich photophysical properties such as intense absorption, long-lived lifetimes, high emission quantum yields and unique redox characteristics. Many of these complexes exhibit photophysical behavior that can be readily controlled...

متن کامل

Synthesis, Characterization, Electrochemical and Spectroelectrochemical Properties of Ruthenium(II) Complexes Containing Phenylcyanamide Ligands and Effect of the Inner- Sphere on the Ru-NCN Chromophore

[Ru(terpy)(bpy)(L)]PF6 complexes, where terpy is 2,2΄:6′,2″– terpyridine, bpy is 2,2΄ - bipyridine and L is monoanions of  4 - bromophenylcyanamide (4 - Brpcyd), 4-methoxyphenylcyanamide (4 - MeOPcyd), 2, 4 - dibromophenylcyanamide (2,4 - Br2pcyd), 2,4-dimethylphenylcyanamide (2,4 - Me2pcyd), 2 - methylphenylcyanamide  (2 ...

متن کامل

Photodynamic inactivation of Escherichia coli by Ru(II) complexes.

[Ru(II)(bpy)(2)(dppn)](2+) (bpy = 2,2'-bipyridine, dppn = 4,5,9,16-tetraazadibenzo[a,c]naphthacene) was found to be able to photoinactivate Gram-negative Escherichia coli efficiently, showing the potential of transition-metal complexes as photosensitizers in the field of photodynamic antimicrobial chemotherapy (PACT).

متن کامل

Synthesis and Photophysical and Electrochemical Properties of Functionalized Mono-, Bis-, and Trisanthracenyl Bridged Ru(II) Bis(2,2′:6′,2″-terpyridine) Charge Transfer Complexes

With the aim of developing new molecular devices having long-range electron transfer in artificial systems and as photosensitizers, a series of homoleptic ruthenium(II) bisterpyridine complexes bearing one to three anthracenyl units sandwiched between terpyridine and 2-methyl-2-butenoic acid group are synthesized and characterized. The complexes formulated as bis-4'-(9-monoanthracenyl-10-(2-met...

متن کامل

Photosensitized production of doubly reduced methylviologen followed by highly efficient methylviologen radical formation using self-assembling ruthenium(II) complexes.

Supramolecular fibers of Ru(II) complexes act as efficient photosensitizers, photochemically generating methylviologen radical (MV.+) and then converting it quantitatively to doubly reduced methylviologen, (MV0), in the presence of triethanolamine.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2017